In the preparation of the monomethylene derivative 30 g. (0.5 mole) of methylene chloride and 15 g. (0.1 mole) of sodium iodide replaced the α, ω -dibromoalkane and a reflux time of 68 hr. was used.

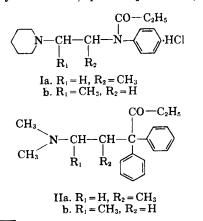
4,4'-Dicarboxy- α,ω -diphenoxy alkanes. Method A. In a 500 ml. three neck flask, fitted with a condenser and mechanical stirrer, were placed 0.02 mole of a pure 4,4'-diformyl- α,ω -diphenoxyalkane and 100 ml. of absolute ethanol. The mixture was heated until all solid had dissolved and 13.6 g. (0.08 mole) of silver nitrate in 28 ml. of water and 4.8 g. (0.12 mole) of sodium hydroxide in 10 ml. of water were added. At the end of a 30-min. heating period the mixture was placed into 500 ml. of hot water and filtered while hot. When necessary the extraction was repeated using another 500 ml. of hot water. The filtrate was acidified to congo red with 6N hydrochloric acid. When the white precipitate was filtered, washed thoroughly with water, and dried at 110°, a product of high purity was obtained. One recrystallization from ethylene glycol monomethyl ether gave an analytically pure product.

Method B. After dissolving 0.02 mole of a 4,4'-dicarbethoxy- α,ω -diphenoxyalkane in hot absolute ethanol or its recrystallization solvent, the solution was cooled to 60° and 500 ml. of a saturated solution of potassium hydroxide in absolute methanol were added. The mixture was refluxed for 30 min. If no precipitation occurred within the first 10 min. of refluxing, solid potassium hydroxide was added until precipitation began. At the end of the reflux period the mixture was cooled in an ice bath for 15 min. and the precipitate was collected. The precipitate was dissolved in 500 to 1000 ml. of hot water and acidified to congo red with 6N hydrochloric acid. When the white solid was filtered, washed thoroughly with water, and dried at 110° an acid of high purity was obtained. Recrystallization from ethylene glycol monomethyl ether gave analytically pure crystals.

Preparation of sodium salts of 4,4'-dicarboxy- α,ω -diphenoxyalkanes. A 4,4'-dicarboxy- α,ω -diphenoxyalkane (5 g.) was placed in a 500 ml. flask and 25-50 ml. of hot water containing a very slight excess of the equivalent amount of sodium hydroxide were added. The mixture was boiled until solution was complete, more water being added when necessary After filtering, the solution was placed in an ice bath for 20 min. At the end of the cooling period, 250 ml. of absolute ethanol was added to the cold solution to initiate or complete precipitation of the sodium salt. The solution was kept in an ice bath for 1 hr. before filtering. The excess of sodium hydroxide was removed by washing the salt with 25 ml. portions of absolute ethanol until the washings were neutral to litmus. The salt was dried at 110°. The yield was nearly quantitative.

ST. LOUIS 4, MO. MILWAUKEE 3, WIS.

[CONTRIBUTION FROM THE ORGANIC CHEMICAL RESEARCH SECTION, LEDERLE LABORATORIES DIVISION, AMERICAN CYANAMID Co.1


Synthetic Analgesics. II. Basic Anilides and Carbanilates¹

WILLIAM B. WRIGHT, JR., HERBERT J. BRABANDER, AND ROBERT A. HARDY, JR.

Received May 5, 1960

N-(tert-Aminoalkyl)anilides and N-(tert-aminoalkyl)carbanilates were synthesized for analgesic testing. N-(1-Methyl-2piperidinoethyl)propionanilide hydrochloride, phenampromid, was chosen as an analgesic worthy of clinical investigation in man. This compound was resolved, and analgesic activity was shown to reside largely in the *l*-enantiomorph.

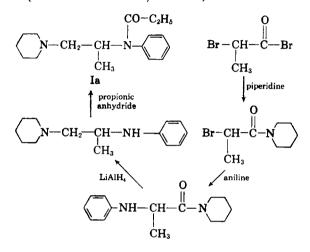
In the previous paper of this series² a new potent analgesic, N-(1-methyl-2-piperidinoethyl)propionanilide hydrochloride, phenampromid³ (Ia), was

⁽¹⁾ Presented in part at the 135th Meeting of the Ameri-

described. This compound may be considered an analog of isomethadone (IIa), in which the dimethylamino moiety has been replaced by the piperidino group and the quaternary carbon atom and one of its attached phenyl groups has been replaced by nitrogen.

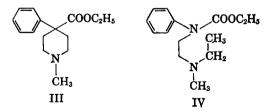
Such a compound retains the steric requirements of a potent analgesic as set forth by Beckett and Casy and others,⁴ and would be expected to fit the same receptor surface as active analgesics such as meperidine, methadone, and morphine.

The basic anilides studied in this program were prepared by acylation of the appropriate ethylenediamines and propanediamines with an acid halide or anhydride. The straight chain ethylenediamine (Table III) and 1,3-propanediamine (Table VII) intermediates were obtained by the well known procedure⁵ of reacting a *tert*-aminoalkyl chloride with an aniline derivative (Method A). This reaction was not useful for the preparation of branched


can Chemical Society, Boston, Mass., April, 1959. (2) Preliminary communication, W. B. Wright, Jr., H. J. Brabander, and R. A. Hardy, Jr., J. Am. Chem. Soc., 81, 1518 (1959).

⁽³⁾ The generic name "phenampromid" has been proposed for this compound.

^{(4) (}a) A. H. Beckett and A. F. Casy, J. Pharm. and Pharmacol., 6, 986 (1954); (b) O. J. Braenden, N. B. Eddy, and H. Halbach, Bull. World Health Organization, 13, 937 (1955).


chain 1,2-propanediamines since branched chain tert-aminoalkyl chlorides rearrange through a cyclic imonium structure and form mixtures of the isomeric diamines.^{5a,6}

Branched chain alkylenediamines of unequivocal structure (Table III) were obtained by lithium aluminum hydride reduction of amides of known structure (Method B). This reaction scheme is illustrated below for the preparation of compound Ia (isomethadone series, Table V):

The other position isomers (methadone series, Table VI) were obtained when the amines were allowed to react in the opposite order.

A series of basic carbanilates (Table VIII) which may be considered as nitrogen analogs of ethyl 1-methyl-4-phenylisonipecotate, meperidine (III), was also prepared by the reaction of ethylenediamines and propanediamines with alkylchloroformates. The structural relationship between meperidine (III) and one of these compounds, ethyl N-(2-ethylmethylaminoethyl)carbanilate (IV), is illustrated below.

These compounds were tested for analgesic activity by two methods. A sequential modification⁷ of the mouse hot plate method of Woolfe and

Pharmacol. Exptl. Therap., 122, 59A (1958).

Macdonald⁸ and Eddy et al.⁹ and the rat-tail radiant heat procedure of D'Amour and Smith¹⁰ were used. Phenampromid (Ia) was found to approximate the potency of codeine in mice and meperidine in rats.¹¹ Extensive pharmacological evaluation led to the selection of this compound for trial in man. Clinical results indicate that phenampromid is a narcotic-type analgesic in man and also possesses antitussive activity.

Structure-activity relationships in this series of N-(tert-aminoalkyl)anilides formed a consistent pattern. Good activity was particularly sensitive to changes in the alkylene chain between the two nitrogens. For example, phenampromid (Ia), with an alkylene chain analogous to isomethadone, was a potent analgesic while the isomeric methadone analog, N-(2-piperidinopropyl)propionanilide (Ib), was virtually devoid of analgesic activity. When the acyl portion of the anilide moiety was varied, optimum activity was obtained with the propionyl group. Substituents in the aromatic ring generally reduced analgesic activity. The aliphatic tert-amino group could be varied somewhat with retention of activity, but the piperidino radical gave the best results. The corresponding N-(tertaminoalkyl)carbanilates (Table VIII) showed poor analgesic activity compared to codeine, meperidine, and the anilide series.

When analgesics containing an asymmetric center are resolved, one enantiomorph is usually much more active than the other.⁴ A similar relation was found with phenampromid. The *l*-enantiomorph was more active and the *d*-enantiomorph was much less active than the racemic form (Table I).

TABLE I **Relative Activities of Enantiomorphs**

Compound	AD ₅₀ (Mg./Kg.) ⁴
dl-Phenampromid	13
<i>l</i> -Phenampromid	9
d-Phenampromid	36
Morphine sulfate	3
Meperidine	11

^{*a*} AD_{50} = the subcutaneous dose which elevates the rattail radiant heat response time by 100% in 50% of the animals.

Resolution was accomplished by treating an ethanol solution of phenampromid with *l*-malic l-N-(1-Methyl-2-piperidinoethyl) propionacid. anilide-*l*-malate, m.p. 178–179.5°, $[\alpha]_{\rm D}^{25}$ – 16.3

(8) G. Woolfe and A. D. Macdonald, J. Pharmacol. Exptl. Therap., 80, 300 (1944).

(9) N. B. Eddy, C. F. Touchberry, and J. E. Lieberman, J. Pharmacol. Expll. Therap., 98, 121 (1950). (10) F. E. D'Amour and D. L. Smith, J. Pharmacol.

Expil. Therap., 72, 74 (1941).

(11) A. C. Österberg and C. E. Rauh, The Pharmacologist, 1 (No. 2), 78 (1959); Abstracts of Papers, Fall Meeting, Am. Soc. Pharmacol. Exptl. Therap., Aug.-Sept., 1959, Coral Gables, Fla.

^{(5) (}a) F. Leonard and U. V. Solmssen, J. Am. Chem. Soc., 70, 2064 (1948); (b) S. G. Fridman, Zhur. Obshchei Khim., 23, 278 (1953); (c) M. A. Stahmann and A. C. Cope, J Am. Chem. Soc., 68, 2494 (1946); (d) M. W. Goldberg and S. Teitel, U. S. Patent 2,746,992, May 22, 1956.

^{(6) (}a) E. E. Royals, Advanced Organic Chemistry, Prentice-Hall, Inc., New York, N. Y., 1954, p. 357; (b) J. F. Kerwin, G. E. Ullyot, R. C. Fuson, and C. L. Zirkle, J. Am. Chem. Soc., 69, 2961 (1947); (c) E. M. Schultz, C. M. Robb, and J. M. Sprague, J. Am. Chem. Soc., 69, 2454 (1947). (7) A. C. Osterberg, J. D. Haynes, and C. E. Rauh, J.

			2-Am	2-Aminopropiomamides R ₁ -CH(des R ₁	-cHCR						
						ĊH3						
							Carbon, %	n, %	Hydrogen, %	en, %	Nitrogen, %	en, %
R	\mathbf{R}_{I}	Yield, ^a %	M.P.	B.P., Mm.	n_{D}^{25}	${ m Formula}$	Caled.	Found	Calcd.	Found	Calcd.	Found
Dimethylamino	Anilino	276	127-129			C ₁₁ H ₁₆ N ₂ O	68.7	68.7	8.4	8.6	14.6	14.7
Diethylamino	Anilino	63	78 - 80			$C_{13}H_{20}N_2O$	70.9	70.6	9.2	9.3	12.7	12.6
Pyrrolidino	Anilino	62	113 - 115			C13H18N2O	71.5	71.9	8.3	8.2	12.8	12.8
Piperidino	Anilino	81	90 - 91			$C_{14}H_{20}N_2O$	72.4	72.2	8.7	8.6	12.1	12.1
Piperidino	m-Chloroanilino	58	140 - 142			C ₁₄ H ₁₉ CIN ₂ O [¢]	63.0	62.8	7.2	7.3	10.5	10.7
Piperidino	m-Anisidino	84	143 - 145			$\mathrm{C_{15}H_{22}N_{2}O_{2}}$	68.7	68.7	8.5	8.7	10.7	10.5
Hêxamethyleneimino	Anilino	22	e^{-20q}			$C_{15}H_{22}N_2O$	73.1	72.9	0.0	9.2	11.4	11.3
Morpholino	Anilino	41	158 - 160			$C_{13}H_{18}N_2O_2$	66.6	66.3	7.7	7.9	12.0	11.7
Anilîno	Dimethylamino	86^{ℓ}		112 - 118(0.5)	1.542	$C_{11}H_{16}N_2O$	68.7	68.4	8.4	8.6	14.6	14.3
Anilino	Diethylamino	91		184 - 186(7)	1.527	$C_{13}H_{20}N_2O$	0.07	70.8	9.2	9.2	12.7	13.3
Anilino	Piperidino	93		138 - 142(0.4)	1.548	$C_{14}H_{20}N_2O$	72.4	72.5	8.7	8.8	12.1	12.1
Anilino	Morpholino	83		212 - 214(7)	1.557	$C_{13}H_{18}N_{2}O_{2}$	66.6	66.4	7.7	7.7	12.0	12.2
Anilino	4-Methylpiperazino	74	85-86			C ₁₄ H ₂₁ N ₃ O	68.0	67.7	8.6	8.7	17.0	17.3
m-Chloroanilino	Piperidino	38^{b}	67 - 68	176 - 180(1)		C ₁₄ H ₁₉ CIN ₂ O ⁷	63.0	62.4	7.2	7.1	10.5	10.7
m-Anisidino	Piperidino	720		154 - 160(0.2)		C ₁₅ H ₂₃ CIN2O2	60.3	60.5	7.8	8.0	9.4	9.4
^a The yield is calcula 13.4. ^a Recrystallized fi 13.5. ^e Hydrochloride, r	^a The yield is calculated from the distilled 2-bromopropionamide unless otherwise noted. ^b The yield is calculated from bromopropionyl bromide. ^c Chlorine: calcd. 13.3; found 13.4. ^d Recrystallized from dilute ethanol. ^e H. Erdtman and N. Löfgren, <i>Svensk. Kem. Tidskr.</i> 49 , 163 (1937), reported b.p. 140–144° (0.44 mm.), ^f Chlorine: calcd. 13.3; found 13.5. ^e Hydrochloride, m.p. 164–166°. Chlorine: calcd. 11.9; found, 12.0.	-bromopropion Erdtman and calcd. 11.9; fou	amide unle N. Löfgrei nd, 12.0.	ss otherwise not n, <i>Svensk. Kem</i> .	ed. ^b The Tidskr. 4	yield is calculate 9, 163 (1937), rej	d from bro orted b.p.	mopropior 140–144°	yl bromide (0.44 mm.	a. ^e Chlori), ^f Chlori	ne: calcd. ne: calcd.	13.3; found 13.3; found

TABLE II

0=

WRIGHT, BRABANDER, AND HARDY

Nfadla J	ື		:	1	i	Carbo	Carbon, %	Hydrogen,	en, %	Chlorine, %		Nitrogen, %
7	, B.P., Mm.	n ⁰	Salt	M.P.	$Formula^h$	Calcd.	Calcd. Found	Calcd. Found	Found	Calcd. Found	Ö	d. Found
H A	Γ	1.537		138-140	C ₁₀ H ₁₇ CIN,	59.7	0 09	8	8 6		7 8 14	6 11 0
a A				177-179	C ₁₁ H ₂₀ Cl ₂ N ₂	52.6	52.9	8.0 0	8.1	28.2	28.4 11.1	=
	•••	_		135-137	C ₁₀ H ₁₆ Cl ₂ N ₂	51.0	51.2	6.8	7.2			
ш оща В 67° СН. Н Н В 57°	90-95(0.6)		HNO.	111-413	C ₁₁ H ₉ N ₃ O ₃	54.8	54.9	7.9	7.9		17.4	17.2
9	8090(0.2)	J 1.533			$C_{11}H_{18}N_2^{*}$	74.1	73.6	10.2	10.2		15.	
H H A 62	100-105/03)		HCH	101-061		2	5	ć				
A	135-147(12)	1 525		135-136	CILHIOCIN ³	01.0	01.9 69 1	ი. ი ი	9.1 1.6	16.5	16.2 13.1	12.9
Ia A	134-138(1.6)			130-132	C.H.CINCO	0.00 8 9 9	00.1 K0 0	2.6	1.6			
Υ.	153 - 156(12)	-	HCI	124-126	C.H.CIN.	64 3	6 P9	0.0 0	ч.г 0 в		19.01 0.01	
A	130 - 133(1.2)	Ļ.	HCI	162-163	C.H.Cl.N.	54.8	55.0	2.5	0.0 0		14.7 11.0 96.0 10.6	2 TI (
V	136 - 144(1.4)	t) 1.544	HCI	138-139	C.H.CI.N.	48.4	48.1	4 Y	0. w - w			
2H6 A	142 - 146(0.3)		2HCI	128-131	C.H.CI.N.O		54.7				0.2 0.4 0.5 0.1	
m-Br A	137 - 140(0.6)	Ξ.	HCI	175-177	C ₁ ,H ₂ ,BrCIN,		46.8	9 9 9 9	9.9 9.9		11 7 0	
CH, H B	87-88(0.5)	÷.	HCI"	61 - 60	C ₁₄ H ₂₆ CIN ₂	64.3	64.2	6.5	8			
	100 - 105(0.4)	 1.518 	HNO	88-90	C ₁₃ H ₂₃ N ₅ O ₁	58.0	58.0	8.6	8.7			15.6
	141 - 145(3)	-i ,	HCI	88-91	C ₁₆ H ₂₆ CIN ₂	67.4	67.1	10.3	10.4	12.5 1	12.7 9.8	
		1.518	HCI	108-109	C16H28Cl2N2	60.2	59.9	8.9	8.7	•••		
		1.555	HCH	149-150	CIIIH CIN	63.6	63.6	8.5	8.7		15.8 12.4	
	110 110(0 0)	1.961	HCI NV	160-162	C12HINCI2N2	55.2	55.0	7.0	7.3	27.2 20	26.9 10.	
H H			NU NU	90-96 105 100	CisH2NJO	58.4	58.4	2.9	8.0			
e E			2HCI	178-190		8.40 2 1 2	64.7	x. x	ი. ა			
m-Cl B	130-133(0.4		HCI	129-131	C.H.C.N.	50.1	4. 70 4. 02	0 r 0 r	N 0 1 0			
m-OCH ₁ B	127-130(0.3)	() 1.542	HCI	108-110	CitH.CIN.O	00.1 63 2	90.7 80 0		9. 0 - 0	Z4.0 Z	24.1 9.7	80.0 50.0
-0H C			Base	150-152	CuHaN.O	7. BC	79.3	0 0	р. С. С.	ņ	-	
А	110 - 112(0.4)	-	2HCI	202 - 204	C.H.C.N.	57.7	57.4			6 1 16	1.21 1.40	
H, B	146 - 150(0.3)) 1.544	HCI	165 - 168	Cub H2 CI N2O	63.3	62.9	o oc	10		24.1 9.0 12.8 0.8	9.9
о. Но-	190 - 195(0.2)	-										
	156 - 161(0.8)		HCI		C ₁₂ H ₁₆ CIN ₂ O	59.4	59.4	7.9	7.6	14.6 14	4.6 11.5	11.7
	1/4-1/8(0.8)		HCI		C ₁₂ H ₁₈ Cl ₂ N ₂ O		52.1	6.6	6.8			
ан ан	108 - 116(0.2)) 1.546) 1 546	2HCI		C ₁₁ H ₂₂ Cl ₂ N ₂ O	53.3	53.0	2.6	7.8			
	TT PART OAT		5	C/1-C/T	CIRTROLIN2O	60.8	60.6	8.3	8.4			11.1
CH ₃ H B 68	130-132(0.7) 1.540) 1.540	Base		CisH ₃ N,	77.5	77.5	10 4	10.5		1 01	0 11
;											1.01	
Piperazino CH ₃ H H B 70 156-158(1.6) 1.543 Base C ₁₄ H ₂₃ N ₃ 72.0 71.6 9.9 9.9 18.0 17.8	156 - 158(1.6) 1.543	(1.543)	Base		C ₁₄ H ₂₃ N ₃	72.0	71.6	0.9	9.9		18.0	17.8

											2		2		5
								Carb	Carbon, %	Hydro	Hydrogen, %	Halogen, %	n, %	Nitrogen, .%	3 n , .%
f	ß	Yield,"	B.P. Mm.	$n_{\rm D}^{25}$	Salt	M.P.	Formula ^d	Calcd.	Found	Calcd.	Found	Calcd.	Found	Calcd.	Found
9	*	٩			2	111 001		0 04	70.6	0	0.6			12.7	12.5
Dimethvlamino	Н	58	115 - 118(1.7)	1.514	HCI	138-141		0.01		10	0.0			12.0	12.0
	"CH.	74	118 - 123(0.5)	1.512	HCI	144 - 145	C14H22N2U	(1.0) I) I		0 01		
Dimetnylamino			149-144(9 5)		HCI	125 - 127	C ₁₈ H ₁₉ CIN ₂ O	61.4	60.9	7.5	7.7	14.0	13.8	0.11	1.11
Dimethylamino		10	(0.7)##1_7#I	1 607			C.,H.,N.O	72.5	72.1	9.7	9.3			11.3	0.11
Diethylamino	н	02	130-133(1.3)	1.000			C.H.N.O.	69.0	68.6	9.4	9.6			10.1	9.6
Diethylamino	m-OCH3	68	152 - 156(1)	1.015				73.9	73 3	10.0	10.1			10.7	10.8
Diethylamino	o-CH3	45	116 - 120(0.2)	1.507				1.09	64.0	8 2	3	12.5	12.5	9.9	9.9
Diethylamino	m-Cl	51	140 - 144(0.9)	1.519				1.00	20.10		6 1	99.4	22.5	8	8.7
Distribution	9 4.diCl	50	138 - 144(0.4)	1.528			C16H22C12N2O	00.00	1.00	- (- c			20	10
Dieunylaumo		2	144 146(0 3)	1 500			$C_{17}H_{28}N_2O_2$	69.8	69.5	9.1	9.1			9.0	- · · ·
Diethylamino	p-UC2H	41 	144-140(0.0)	1 599			C. H., BrN,O	55.0	54.9	7.1	7.1	24.4	24.6	8.6	8.9
Diethylamino	m-Br	48	138-142(U.3)	1.000			C.H.N.O	75.0	74.7	10.6	10.6			9.2	9.6
Dibutylamino	Η	8	132 - 134(0.3)	1.498			C.H.CIN.O	67.3	67.0	9.2	9.3	10.5	10.5	8.3	8.4
Dibutylamino	m-Cl	84	140-144(0.3)	110.1		100 120	C.H.N.O	73.1	72.8	0.6	8.9			11.4	11.5
Pvrrolidino	Η	66	132 - 136(0.5)	1.528		101-071		56.9	56.4	0 2	7.1	22.4	22.4	8.8	9.2
Pvrrolidino	m-Cl	68	$146 - 150(0.7)^{\circ}$	1.538		101-R71	CIGITIZOULT O	0.01 10.01	72.6	0 3	0 2			10.8	11.0
Pineridino	Н	63	150 - 152(1)	1.526	E CI	121-021)))	9			10.7	10.9
		лл 1	154-160(0 8)	1 527	HNO.	143 - 144	C16H22N2O2	1.80	4.00	0			•		
Morpholino	m-Cl	62	154 - 160(0.2)	1.539	HCI	189-191	C16H21CIN2O2	60.7	60.6	7.1	7.3	12.0	11.9	9.4	9.3
^a All compoun bases unless other	ds were pre-	pared by Analysi	^a All compounds were prepared by Method D. ^b Distilled bases unless otherwise noted. ^c Analysis was unsatisfactory. ^f		base. ^e The m Hydrochloride	microanaly le.	$\frac{base.}{base.}$ ^c The microanalyses for these salts were within the usually accepted limits. ^d Formulas and analyses are for the Hydrochloride.	s were wit	hin the u	sually acc	epted limi	ts. ^d Forn	ulas and a	analyses a	re for the

TABLE IV

N-(2-tert-Aminoethyl)propionanilides^a

2-let-Aminoethyl)propionanii CO—C2Hs

щ

B-CH2-CH2-N.

	IIN	
	ц)А	-
	гнү	-
2	-METHYLETHYL)ANH	•
TABLE	THT	
AB	-ME	•
E	fino-1-	1
	NI	

LIDES^a N-(2-lert-AMINO-1-METHYLETHYL)A (Isomethadone Analogs)

R
-
N-C=0
CH ₋ CH-
CH2-
B

			Yield. ^b						Carbon, %	n, %	Hydrogen, %	en, %	Halogen, %	3 n , %	Nitrog	Nitrogen, $\%$
в	R	$\mathbf{R_{i}}$	%	B.P., Mm.	$n_{\rm D}^{25}$	Salt	M.P.	$\operatorname{Formula}^{\mathfrak{c}}$	Calcd.	Found	Calcd. Found	Found	Calcd.	Found	Calcd.	Found
Dimethylamino	H	C_2H_5	72^{d}	118-122(0.05)	1.509	HNO3	105-106	C ₁₄ H ₂₃ N ₃ O ₄	56.5	56.5	7.8	7.8			14.1	14.1
Diethylamino	Н	CH3	17^{d}	108 - 112(0.1)	1.507	HCI	186 - 188	C15H25CIN2O	63.3	63.4	8.8	8.9	12.5	12.1	9.8	9.9
Diethylamino	Н	C_2H_5	73^{d}	115 - 118(0.2)	1.505	HCI	160 - 162	C16HzrCIN2O	64.3	64.4	9.1	9.3	11.9	11.5	9.4	9.1
Diethylamino	Н	$C_{3}H_{7}$	09	110 - 112(0.2)	1.501	HCI	146-148	C ₁₇ H ₂₉ CIN ₂ O	65.3	65.4	9.3	9.2	11.3	11.2	8.9	8.9
Diethylamino	Н	i-C ₃ H ₇	36	95 - 100(0.2)	1.506	HCI	$164 - 166^{f}$	C ₁₇ H ₂₉ CIN ₂ O	65.3	65.0	9.3	9.3	11.3	11.2	8.9	9.0
Pyrrolidino	Н	C_2H_5	72^{d}	122 - 126(0.4)	1.527	HCI	197-1980	C16H25CIN2O	64.7	64.4	8.5	8.4	12.0	11.9	9.4	9.5
Pyrrolidino	Н	C ₃ H,	68	124 - 128(0.3)	1.517	HCI	168 - 170	C ₁₇ H ₂₇ CIN ₂ O	65.7	65.6	8.8	8.9	11.4	11.1	9.0	9.2
Piperidino	Н	CH ₃	63^d	116-120(0.3)	1.523	HCI	174-176	C16H25CIN2O	64.7	64.5	8.5	8.4	12.0	11.7	9.5	9.5
Piperidino	Η	C_2H_5	88	124 - 128(0.2)	1.520	HCI	201 - 202	C ₁₇ H ₂₇ ClN ₂ O	65.8	65.6	8.8	0.0	11.4	11.7	0.0	9.1
Piperidino	Н	$C_{3}H_{7}$	55	116 - 120(0.2)	1.517	HCI	180 - 182	C18H29CIN2O	66.5	66.7	9.0	0.0	10.9	11.0	8.6	8.9
Piperidino	Н	$i-C_3H_7$	58^{d}	110 - 115(0.2)		HCI	167 - 169	C ₁₈ H ₂₉ CIN ₂ O	66.5	66.4	0.0	0.0	10.9	11.2	8.6	8.9
Piperidino	Н	C4H,	73^{d}	140 - 145(0.8)		HCI	$164 - 165^{h}$	C ₁₉ H ₃₁ CIN ₂ O	67.3	67.4	9.2	9.3	10.5	10.4	8.3	8.1
Piperidino	m -OCH $_3$	C_2H_5	75	140 - 145(0.3)		HCI	193 - 194	C ₁₈ H ₂₉ CIN ₂ O ₂	63.4	63.4	8.6	9.0	10.4	10.2	8.2	8.2
Piperidino	m-OCOC ₂ H ₅	-	82	155 - 160(0.2)	1.514			$\mathrm{C}_{20}\mathrm{H}_{30}\mathrm{N}_{2}\mathrm{O}_{3}^{\ell}$	69.3	69.0	8.7	0.0			8.1	8.4
Piperidino	m-Cl	C_2H_5	79	146 - 150(0.4)	1.530			C ₁₇ H ₂₅ CIN ₂ O ⁶	66.1	66.0	8.2	8.4	11.5	11.3	9.1	0.0
Morpholino	Н	C_2H_b	91	144 - 148(0.7)	1.523	HCI	189 - 190	C ₁₆ H ₂₅ CIN ₂ O ₂	61.4	61.4	8.1	8.2	11.3	11.3	0.0	9.1
Hexamethyleneimino	Н	C_2H_5	75	146 - 148(0.3)	1.522	HCI	187 - 188	C ₁₈ H ₂₉ CIN ₂ O	66.5	66.3	0.0	9.2	10.9	10.7	8.6	9.1
^a All compounds were prepared by Method D. ^b Yields are for the distilled base. ^c Formulas and analyses are reported for the salts unless otherwise noted. ^d Microanalyses on these bases were unsatisfactory due to low carbon. ^e Formulas and analyses are for the base. ^f Recrystallized from ethyl acetate. ^g Recrystallized from methanol and ether. ^h Recrystallized from acetone.	e prepared by I ory due to low o	Method D 2arbon. *]	^b Yield	s are for the dist s and analyses a	illed base re for the	e. ^e Forn e base. 7	nulas and a Recrystall	the distilled base. c Formulas and analyses are reported for the salts unless otherwise noted. d Microanalyses on these nalyses are for the base. f Recrystallized from methanol and ether. h Recrystallized	rted for t acetate.	he salts "Recrys	unless of tallized f	therwise rom met	noted. thanol a	^d Microa nd ether.	nalyses ^h Recry	on these stallized

FEBRUARY 1961

				DAL	DER, AND HARDY					
	Nitrogen, % alcd. Found	12.1 10.7 10.4	8.3 8.3	14.4	the bases	INILIOGEN, %	11.0 10.4	9.9 11.4	9.5	8.9 8
	Nitr Calcd.	12.0 10.7 10.2	9.2 9.2 8.1	14.5	with the set of the se	Calcd.	11.2 10.4	9.8 11.5	9.4 11 0	9.0
	Hydrogen, % alcd. Found	9.4 10.0 9.6	9.4 9.7 8.7	9.2	und analys	, 70 Found	28.2 13.0	12.0 14.5	12.0 14 1	11.4
	Hydro Calcd.	9.5 9.6 9.6	0.0 0.3 7.7	9.4	² ormulae s	Calcd. Four	28.2 13.1	12.0 14.6	11.9 13.9	11.4
	Carbon, % led. Found	71.0 72.0^{d} 74.3 70.3	70.6 8.89 60.5	70.0	ther. ° 1	u, 70 Found	7.8 8.7	9.9 9.9	9.2 9.3	8.9
	Caled.	71.7 73.2 74.4 70.3	71.0 69.3 60.5	70.5	y accepted anol and ei Hvdroren	Calcd. Fo			9.1	
	Formula	C ₁ ,H ₂ ,N ₂ O C ₁ ,H ₂ ,N ₂ O C ₁ ,H ₂ ,N ₂ O C ₁ ,H ₂ ,N ₂ O	C18H38N2O2 C20H30N2O3 C16H20N2O3	C _{In} H _{zn} N ₃ O	n the usuall d from meth uss oz	pu	52.2 62.4	02.0 64.3	64.2 66.0	65.8
	M.P. F	134–136 C.C.C.C.C.	124–127 C1 156–158 C2	-	⁶ Analyses on these salts were within the from ethyl acetate. ⁹ Recrystallized fr TABLE VII DERIVATIVES OF 1,3-PROPANEDIAMINES B-CH ₂ -CH ₂ -CH ₂ -CH ₂ -N	Calcd.	52.6 62.1	64.3	64.3 66 0	65.7
					Analyses on these salts we I from ethyl acetate. " Recu TABLE VII ERIVATIVES OF 1,3-PROPAN R R R R BCH ₂ CH ₂ N	ula ^b	N ₂ N ₂ NN ₂ O	NN ²	NN ² O	O ^z NK
,	Salt ^b	2 HNO3	7 HCl ⁷ 5 HCl ⁷		yses on thy ac TA ATIVES OF CH _z -CH	Formula ^b	C ₁₁ H ₂₀ Cl ₂ N ₂ C ₁₄ H ₂₂ ClN ₂ O	CIBH28CIN20 CIBH28CIN2	C ₁₆ H ₂₇ CIN ₂ O C ₁₄ H ₂₅ CIN ₅	C _{I7} H ₂₇ CIN ₂ O
	$n_{\rm D}^{25}$	$ \begin{array}{c} 1.512 \\ 1.506 \\ 1.524 \end{array} $	1.527 1.516	1.525	ed. ^b Anal ₁ Jlized from DERIV. B—(M.P.	180-182 170-172	124-126	153-154 178-1817	197-1990
	B.P., Mm.	$\begin{array}{c} 115-120(0.1)\\ 116-120(0.3)\\ 120-123(0.2)\\ 210-215(0.1)\\ \end{array}$	168-172(0.2) 175-180(0.1) 146-150(0.3)	150-153(0.1)	I Recrysta	Salt	2HCI HCI	HCI	HCI	HCI
			••••		unless othe Method E.	B.P., mm.	145-150(10) 121-124(6)	11,-122(0.1) 119-121(2)	145 - 150(2) 117 - 120(0.5)	[40-144(0.3)
	Yield, %	68 60 76 43		62	Method I canalysis. ^e	Yield,ª %	65° 1 72 ^d 1		66 ^d 1. 64 ^c 1	
	R	H H m_OH	<i>m-</i> 0СОС ₃ Н, н	H	repared by improve the	R Yie	H Propionyl	ryı	ionyl	Propionyl
					s were pi	Γ		0 butyryi H	Propionyl H	Prop
	В	Dimethylamino Diethylamino Piperidino	Piperidino Piperidino Mombolino	4-Methylpiperazino	^a Compounds were prepared by Method D unless otherwise noted. ^b Analyses on these salts were within the usually accepted limits. ^c Formulae and analyses are for the bases ^d Redistillation did not improve the analysis. ^e Method E. ^I Recrystallized from methanol and ether. TABLE VII DERIVATIVES OF 1,3-PROPANEDIAMINES $B-CH_2-CH_2-CH_2-CH_2-N$ Carhon O. Hudroon O. Charlon O. Mitron O. Mitron O. Mitron O. Mitron O. Mitron O. Mitron O.	В	Dimethylamino Dimethylamino	Dimetnylamino Diethylamino	Diethylamino Pireridino	Piperidino

N-(2-tert-Aminopropyl) propionanilides^a (Methadone Analogs) TABLE VI

C,H, ం=ల 110 1.20

Ř

WRIGHT, BRABANDER, AND HARDY

VOL. 26

^a The yield is for the distilled base. ^b The formulas and analyses are for the salts. ^c Method A. ^d Method D. ^e British patent 604,363 (1948) reported m.p. 122-123°. ^f Reference 3b reported b.p. 145° (3 mm.). ^g Recrystallized from ethanol and acetone.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				lield."			Hydro- chloride.		Carbo	л, %	Hydrog	en, %	Haloge	ъ, %	Nitrog	çen, %
42 106-110(1.6) 1.508 135-138 $C_{14}H_{32}CIN_{2}O_{3}$ 57.2 57.3 7.8 8.0 13.0 13.0 10.3 46 112-117(0.5) 1.504 145-147 $C_{14}H_{32}CIN_{3}O_{3}$ 58.6 59.0 8.1 8.1 12.4 12.6 9.8 73° 118-124(1.0) 1.519 172-174 $C_{14}H_{32}CIN_{3}O_{3}$ 50.7 6.5 6.4 23.1 23.4 9.1 73° 118-124(1.0) 1.519 172-174 $C_{14}H_{32}N_{3}O_{3}$ 50.7 6.5 6.4 23.1 23.4 9.1 73° 118-126(2.0) 1.509 68-70 $C_{14}H_{32}N_{3}O_{3}$ 68.0 9.1 8.1 8.1 12.4 12.5 9.0 52 120-125(2.0) 1.509 68-70 $C_{14}H_{32}N_{3}O_{3}$ 68.0 9.1 9.0 9.0 53 130-133(1.7) 1.498 $C_{14}H_{32}N_{3}O_{3}$ 68.2 68.1 8.1 8.3 10.2 11.2 54 152-156(1.8) 1.418 1.515 $C_{14}H_{32}N_{3}O_{3}$ 69.2 8	$\mathbf{R_2}$			%	B.P., Mm.	n_{D}^{28}	M.P.	Formula ^b	Calcd.	Found	Calcd.	Found	Calcd.	Found	Calcd.	Found
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Н		C_2H_6	42	106-110(1.6)	1.508	135-138	C ₁₃ H ₂₁ CIN ₂ O ₂	57.2	57.3	7.8	8.0	13.0	13.0	10.3	10.3
44 118-124(1.0) 1.519 172-174 $C_{14}H_{3}Ch_{3}O_{3}$ 50.7 6.5 6.4 23.1 23.4 9.1 73° 115-118(0, 4) 1.497 $C_{14}H_{3}N_{3}O_{3}$ 67.2 67.0 8.9 9.0 11.2 52 120-125(2.0) 1.509 68-70 $C_{14}H_{3}N_{3}O_{3}$ 68.0 9.1 8.3 12.4 12.5 9.8 52 120-125(2.0) 1.509 68-70 $C_{14}H_{3}N_{3}O_{3}$ 68.0 9.1 9.0 11.2 53 130-133(1.8) 1.515 $C_{16}H_{3N}N_{2}O_{3}$ 68.0 9.1 9.0 10.1 53 130-133(1.8) 1.513 $C_{17}H_{3N}N_{2}O_{3}$ 69.0 9.4 9.5 10.1 59 152-156(1.8) 1.493 $C_{11}H_{3N}N_{2}O_{3}$ 69.2 8.3 8.1 10.7 11.0 8.5 50 145-146(0.6) 1.506 $C_{12}H_{3N}N_{2}O_{3}$ 69.2 8.3 8.1 10.7 11.0 8.5 62 132-146(0.6) 1.503 124-126 $C_{14}H_{3N}N_{2}O_{3}$ 69.2	p-CH		C_2H_6	46	112 - 117(0.5)	1.504	145-147	C ₁₄ H ₂₃ CIN ₂ O ₂	58.6	59.0	8.1	8.1	12.4	12.6	9.8	9.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m-Cl			44	118 - 124(1.0)	1.519	172-174	C13H20Cl2N2O2	50.8	50.7	6.5	6.4	23.1	23.4	9.1	9.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Η			73°	115 - 118(0.4)	1.497		C14H22N2O2	67.2	67.0	8.9	9.0			11.2	11.3
52 126-131(1.7) 1.498 $C_{16}H_{34}N_1O_2$ 68.3 68.0 9.1 9.0 10.6 33 130-133(1.8) 1.515 $C_{16}H_{34}N_2O_2$ 69.0 69.0 9.4 9.5 10.1 59 152-156(1.8) 1.493 $C_{16}H_{32}N_2O_2$ 69.0 69.0 9.4 9.5 10.1 49 142-146(0.6) 1.505 125-126 $C_{16}H_{32}N_2O_2$ 69.2 58.2 8.3 8.1 10.7 11.0 9.6 49 142-146(0.6) 1.505 125-126 $C_{16}H_{32}\OmegaN_2O_2$ 61.4 61.3 8.1 8.1 9.6 9.6 71 ^{c,d} 183-140(0.3) 1.513 124-126 $C_{11}H_{32}\OmegaN_2O_3$ 61.4 61.2 8.3 8.3 8.1 9.0 66° 136-140(0.3) 1.519 123-125 $C_{14}H_{32}\OmegaN_2O_3$ 62.5 62.3 8.3 8.3 8.1 9.0 66° 136-140(0.3) 1.519 123-125 $C_{14}H_{32}\OmegaN_2O_3$ 65.7 66.1 8.2 8.4 9.6 66° 136-162(0.8)	Н			27	120 - 125(2.0)	1.509	68-70	C ₁₄ H ₂₃ CIN ₂ O ₃	58.6	58.4	8.1	8.3	12.4	12.5	9.8	9.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н			52	126 - 131(1.7)	1.498		C ₁₅ H ₂₄ N ₂ O ₂	68.3	68.0	9.1	0.0			10.6	10.5
59 152-156(1.8) 1.493 $C_{11}H_{32}N_{1}O_{2}$ 69.8 69.7 9.6 9.9 49 142-146(0.6) 1.505 125-126 $C_{16}H_{3}CIN_{2}O_{2}$ 58.2 58.2 58.2 8.3 8.1 10.7 11.0 8.5 62 138-140(0.8) 100-102 $C_{16}H_{3}CIN_{2}O_{2}$ 61.4 61.3 8.1 8.3 11.2 11.2 9.0 71 ^{6,4} 138-140(0.3) 1.513 124-126 $C_{17}H_{3}CIN_{2}O_{2}$ 62.5 62.2 8.3 8.5 10.8 11.0 8.6 66' 136-140(0.3) 1.513 124-126 $C_{16}H_{3}CIN_{2}O_{3}$ 57.2 57.0 7.4 7.6 11.3 11.3 8.6 66' 136-140(0.3) 1.519 123-125 $C_{16}H_{3}N_{2}O_{3}$ 65.7 66.1 8.2 8.2 8.2 8.6 66' 136-140(0.8) 1.516 $C_{16}H_{3}N_{2}O_{3}$ 65.7 66.1 8.2 8.2 8.2 8.9 9.6	H			33	130 - 133(1.8)	1.515		C16H26N202	69.0	0.69	9.4	9.5			10.1	10.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Η			59		1.493		$C_{17}H_{28}N_{2}O_{2}$	69.8	69.7	9.6	9.9			9.6	9.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>m</i> -0C	Ξ.		49	142 - 146(0.6)	1.505	125 - 126	C ₁₆ H ₂₇ CIN ₂ O ₃	58.2	58.2	8.3	8.1	10.7	11.0	8.5	8.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Н			62	138 - 140(0.8)		100 - 102	C16H26CIN2O2	61.4	61.3	8.1	8.3	11.3	11.2	0.0	9.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Н			71c,d			183-185	C _{In} H _n CIN ₂ O ₃	62.5	62.2	8.3	8.5	10.8	11.0	8.6	8.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H			62°	134 - 140(0.3)	1.513	124 - 126	C ₁₇ H ₂₇ CIN ₂ O ₂	62.5	62.3	8.3	8.3	10.8	10.6	8.6	8.8
66 160-162(0.8) 1.516 C ₁₆ H ₂₄ N ₅ O ₅ 65.7 66.1 8.2 8.2 8.4 9.6	н			66°	136 - 140(0.3)	1.519	123 - 125	C ₁₆ H ₂₂ CIN ₂ O ₃	57.2	57.0	7.4	7.6	11.3	11.3	8.9	9.0
	н			66	160 - 162(0.8)	1.516		C16H24N2O1	65.7	66.1	8.2	8.2	8.4		9.6	9.6

TABLE VIII

N-(tert-AMINOALKYL)CARBANILATES (Meperidine Analogs)

0=0 \	-N - O - O - O - O - O - O - O - O - O -
	B-CH-CH- R R ₁

FEBRUARY 1961	T	
---------------	---	--

(2% in water), precipitated. This salt was easily converted to *l-N-(1-methyl-2-piperidinoethyl)*propionanilide hydrochloride, m.p., 202-203° and $[\alpha]_{\rm D}^{25}$ – 18.9 (2% in water). If the ethanolic solution of phenampromid was treated instead with dtartaric acid, d-N-(1-methyl-2-piperidinoethyl)propionanilide-d-tartrate, m.p. 204.5–205.5° and $[\alpha]_{D}^{52}$ + 23.7 (2% in water), separated and was in turn converted to d-N-(1-methyl-2-piperidinoethyl)propionanilide hydrochloride, m.p. 202-203° and $[\alpha]_{D}^{25} + 18.9$ (2% in water).

EXPERIMENTAL

Preparation of salts. The salts were prepared by treating an ethanolic solution of the base with ethanolic hydrogen chloride or aqueous nitric acid. If the salt did not precipitate upon cooling or dilution with ether, the mixture was concentrated to remove the solvent and then treated with ether. Trituration and cooling caused crystallization. Unless otherwise noted, the salts were recrystallized from ethanol or ethanol by addition of ether.

2-Bromopropionamides. The 2-bromopropionamides¹² were prepared by the following general procedure, which combines features of several literature procedures. A solution of 1 mole of the appropriate amine in 150 ml. of ether was added dropwise to a stirred solution of 0.5 mole of 2-bromopropionyl bromide in 500 ml. of ether. Cooling was applied during this addition to hold the temperature below 15°. The reaction mixture was stirred for 1-2 hr. longer and then filtered to remove the amine hydrobromide. The precipitate was washed with ether, the ether filtrates were evaporated, and the residues were distilled. Alternatively, the ether solution of crude 2-bromopropionamide was not distilled but was washed with dilute hydrochloric acid, dried over anhydrous magnesium sulfate, and treated directly with an amine as described below. These compounds are skin irritants and should be handled with care.

2-Aminopropionamides (Table II). A mixture of 1 mole of the 2-bromopropionamide (distilled or prepared in situ in ether) and 2 moles of the appropriate amine was refluxed in benzene for 6-20 hr. and then filtered to remove the precipitated amine hydrobromide. The filtrate was concentrated and then treated with an excess of aqueous potassium hydroxide. The desired product usually precipitated, and was filtered and recrystallized from ethanol. When precipitation did not occur, the oil was extracted with ether and distilled.

Alkylenediamines (Tables III and VII). Method A. A mixture of 1 mole of the dialkylaminoalkyl chloride hydrochloride, 1.5 moles of the appropriate aniline, 2.0 moles of sodium carbonate, and about 500 ml. of toluene was refluxed with stirring for about 18 hr. and then cooled. One mole of 5N potassium hydroxide was added and the organic layer was separated. The aqueous layer was extracted with ether and the combined organic layers were dried over magnesium sulfate and distilled. Many of these compounds gave poor analyses even after redistillation. In spite of this they generally gave satisfactory reaction products.

Method B. A solution of 0.1 mole of the 2-aminopropionamide in 100 ml. of tetrahydrofuran was added dropwise to a solution of 0.2 mole of lithium aluminum hydride in 200 ml. of tetrahydrofuran. The mixture was refluxed for 5-8 hr.,

and then cooled and treated with 7.6 ml. of water, 23 ml. of 15% sodium hydroxide, and finally with 23 ml. of water. The reaction mixture was filtered and the precipitate was washed with tetrahydrofuran or ether. The organic layers were dried and distilled.

Method C. A mixture of 37.2 g. of 1-[2-(m-anisidino)propyl]piperidine (prepared by Method B) and 150 ml. of 48% hydrobromic acid was refluxed for 42 hr. and then concentrated. The gummy residue was treated with dilute alkali until about pH 9 was reached. The precipitate was filtered. washed with water, and recrystallized from ethanol. The yield of m-(1-methyl-2-piperidinoethylamino)phenol, m.p. 150–152°, was 16.7 g. (48%).

m-(2-Piperidinopropyl)phenol was prepared by essentially the same procedure except that the product was a viscous oil which was purified by distillation and used without analysis.

Acylated alkylenediamines (Tables IV-VII). Method D. A solution of 0.05 mole of the alkylenediamine in about 25 ml. of the appropriate anhydride was heated on the steam bath for 2-4 hr. and then distilled. The products usually analyzed correctly without redistillation.

Method E. m-Hydroxy-N-(2-piperidinopropyl)propionanilide. A mixture of 6.2 g. of m-(2-piperidinopropyl)phenol, 2.7 g. of propionyl chloride, and 25 ml. of benzene was heated on the steam bath for 3 hr., cooled, and then treated with 5.8 ml. of 5N sodium hydroxide. The benzene laver was separated, and the residue was extracted with ether in which the product appeared to be more soluble. The organic layers were combined, dried over magnesium sulfate and distilled. The yield of m-hydroxy-N-(2-piperidinopropyl)propionanilide, b.p. $210-215^{\circ}$ (0.1 mm.), was 43%. The infrared absorption curve showed a strong band at 6.08 μ and a very weak band at 5.67 μ , evidence that amidation rather than esterification had occurred.

N-(tert-Aminoalkyl)carbanilates (Table VIII). A solution of 0.05 mole of the ethylenediamine in about 50 ml. of ethanol or benzene was cooled and 0.05-0.07 mole of the alkyl chloroformate was added. The reaction mixture was refluxed for 1-3 hr. and then concentrated to remove the solvent. An excess of aqueous potassium hydroxide was added (with cooling) and the product was extracted into ether. The ether extracts were dried over magnesium sulfate and then distilled under reduced pressure.

Resolution studies. l-N-(1-Methyl-2-piperidinoethyl)propionanilide hydrochloride. A solution of 22.5 g. (0.168 mole) of *l*-malic acid and 46.0 g. (0.168 mole) of N-(1-methyl-2piperidinoethyl)propionanilide in 400 ml. of ethanol was cooled, and the precipitate which separated was filtered and washed with ethanol and then ether. The yield of crude l-N-(1-methyl-2-piperidinoethyl) propionanilide-l-malate, m.p. 168-173°, was 34.2 g. Three recrystallizations from ethanol resulted in 24.3 g. (71%) of pure product, m.p. 178.5–179.5° and $[\alpha]_{D}^{25}$ –16.3 (2% in water). Anal. Calcd. for C₂₁H₃₂N₂O₆: C, 61.7; H, 7.9; N, 6.9.

Found: C, 61.7; H, 7.8; N, 7.1.

A mixture of 20.4 g. (0.05 mole) of l-N-(1-methyl-2piperidinoethyl)propionanilide-l-malate and 120 ml. (0.12 mole) of 1N sodium hydroxide was extracted with ether. The ether extracts were washed with water, dried over magnesium sulfate, and treated with 30 ml. of 2.1N ethanolic hydrogen chloride. The precipitate was filtered and recrystallized from ethanol by addition of ether. The yield of l-N-(1-methyl-2-piperidinoethyl)propionanilide hydrochloride, m.p. 202–203° and $[\alpha]_{D}^{25}$ – 18.9 (2% in water), was 8.2 g. (36% over-all).

Anal. Caled. for C17H27ClN2O: C, 65.7; H, 8.8; Cl, 11.4; N, 9.0. Found: C, 65.5; H, 8.6; Cl, 11.7; N, 9.0.

d-N-(1-Methyl-2-piperidinoethyl) propionanilide hydrochloride. A solution of 12.6 g. (0.084 mole) of d-tartaric acid and 46 g. (0.168 mole) of N-(1-methyl-2-piperidinoethyl)propionanilide in 350 ml. of ethanol was cooled, and the precipitate which separated was washed with ethanol and then ether. The yield of crude d-N-(1-methyl-2-piperidino-

^{(12) (}a) C. A. Bischoff, Ber., 31, 2847 (1898); (b) N. L. Drake, C. M. Eaker, and W. Shenk, J. Am. Chem. Soc., 70, 677 (1948); (c) E. K. Harvill, R. M. Herbst, and E. G. Schreiner, J. Org. Chem., 17, 1597 (1952); (d) J. von Braun, F. Dengel, and A. Jacob, Ber., 70B, 994 (1937); (e) W. E. Weaver and W. M. Whaley, J. Am. Chem. Soc., 69, 1144 (1947).

ethyl)propionanilide-d-tartrate, m.p. 194–197°, was 30.7 g. Three recrystallizations from ethanol resulted in a 71% yield of pure product, m.p. 204.5–205.5° and $[\alpha]_{D}^{25}$ +23.7 (2% in water).

Anal. Calcd. for $C_{21}H_{32}N_2O_7$: C, 59.4; H, 7.6; N, 6.6. Found: C, 59.2; H, 7.8; N, 6.6.

This product was converted to the hydrochloride by the procedure described above for the *l* isomer. The over-all yield of *d*-*N*-(1-methyl-2-piperidinoethyl)propionanilide hydrochloride, m.p. 202-203° and $[\alpha]_D^{25}$ +18.9 (2% in water) was 8.1 g. (35%).

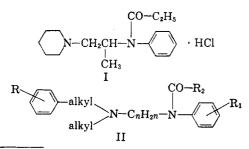
Anal. Calcd. for C₁₇H₂₇ClN₂O: C, 65.7; H, 8.8; Cl, 11.4; N, 9.0. Found: C, 65.6; H, 8.8; Cl, 11.2; N, 9.4.

Acknowledgment. We are indebted to Mr. L. Brancone and associates for the microanalyses, to Dr. J. H. Clark and co-workers for the preparation of some of the intermediates, and to Dr. A. C. Osterberg and associates for the pharmacological data.

PEARL RIVER, N.Y.

[Contribution from the Organic Chemical Research Section, Lederle Laboratories Division, American Cyanamid Co.]

Synthetic Analgesics. III. Basic Anilides and Carbanilates Containing the Phenalkyl Moiety¹

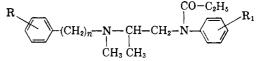

WILLIAM B. WRIGHT, JR., HERBERT J. BRABANDER, AND ROBERT A. HARDY, JR.

Received May 5, 1960

A series of N-(*tert*-aminoalkyl)anilides and -carbanilates containing the phenalkyl moiety has been prepared. Some of these compounds show analgesic potency in the codeine to morphine range. N-[2-(Methylphenethylamino)propyl]propionanilide sulfate, diampromid, has been chosen for clinical trial in man.

N-(1-Methyl-2-piperidinoethyl)propionanilide hydrochloride (I), phenampromid, which may be considered a nitrogen analog of isomethadone, was reported in the previous papers of this series² to have analgesic activity similar to meperidine.

Other investigators³ have shown that replacement of the N-methyl group by a phenalkyl group in analgesics such as meperidine, racemorphan, and α -prodine often results in increased activity. We, therefore, were interested in determining whether increased potency could be obtained by introducing



(1) (a) Presented in part at the 135th Meeting of the American Chemical Society, Boston, Mass., April, 1959;
(b) W. B. Wright, Jr., R. A. Hardy, Jr., and H. J. Brabander, U. S. Patent 2,944,081, July, 1960.

(2) W. B. Wright, Jr., H. J. Brabander, and R. A. Hardy, Jr., J. Am. Chem. Soc., 81, 1518 (1959); J. Org. Chem., 26,476 (1961).

(3) (a) T. D. Perrine and N. B. Eddy, J. Org. Chem. 21, 125 (1956);
(b) E. L. May, J. Org. Chem. 21, 899 (1956);
(c) J. Weijlard, P. D. Orahovats, A. P. Sullivan, G. Purdue, F. D. Heath, and K. Pfister, J. Am. Chem. Soc., 78, 2342 (1956);
(d) B. Elpern, L. N. Gardner, and L. Grumbach, J. Am. Chem. Soc., 79, 1951 (1957);
(e) B. Elpern, W. Wetterau, P. Carabateas, and L. Grumbach, 133rd Meeting of the American Chemical Society, April, 1958, Abstracts of Papers, p. 11M., Abs. No. 19.

TABLE I Analgesic Activity

R	n	\mathbf{R}_1	$\mathrm{AD}_{50}{}^{a}$ Mg./Kg.
Н	1	Н	8
m-CH ₃	1	Н	2
p-CH ₃ p-Cl p-F	1	\mathbf{H}	3
p-Cl	1	н	6
p-F	1	\mathbf{H}	6
H	2	\mathbf{H}	4
m-CH ₃	2	\mathbf{H}	14
p-NH ₂	2	Н	16
H	2	m-CH ₃ O	15
н	3	H	17
ð		н	4
Meperidine			11
Morphine			3

 $^a\,\rm AD_{50}$ = The subcutaneous dose which elevates the rat tail radiant heat response time by 100% in 50% of the animals. $^b\,N\$ [2-(Cinnamylmethylamino)propyl]propionanilide.

phenalkyl groups in our series of *N*-(*tert*-aminoalkyl)anilides and -carbonilates. Such compounds are represented by formula II.

One general procedure used for these compounds is that described in our previous paper.² This consisted of acylation of the appropriate alkylenediamines with an acid chloride or anhydride (Tables IV, V, VI). Conventional alkylation of an aniline with a *tert*-aminoalkyl halide gave the straight chain diamines⁴ (Tables III and V). Lith-